Fundamentals of Computer
Architecture

8. Bringing It All Together — The
Hardware Engineer’s Perspective

Slides for Fundamentals of Computer Architecture 1
© Mark Burrell, 2004

CHAPTER OVERVIEW

 This chapter includes:

— Assigning tasks to individual processor
components;

— Micro-instructions;

— Instruction sets;

— The format of a program;

— The fetch-execute cycle;

— Executing programs in JASPer.

Slides for Fundamentals of Computer Architecture 2
© Mark Burrell, 2004

* So what sort of tasks does the
processor have to do?

Processor

) MAR
— It needs to be able to read bit e —

patterns from, and write bit
patterns to, memory. We saw A}
how it could do this in the
previous chapter;

— It needs to keep track of where
we are within a program, so it
knows what to do next; ﬁgi't“""

— It needs to know what to do for
a particular instruction;

— It needs to be able to perform
arithmetic and logical
operations;

IR; 1=

— It needs some general purpose

storage areas.

Slides for Fundamentals of Computer Architecture 3
© Mark Burrell, 2004

Introducing Micro-Instructions

» Data movement micro- * How can we go about
instructions obtaining the logical AND
— MAR « [A]; of the bit patterns stored
« ALU micro-instructions in the A and B registers?
— ALUr = [ALUX]+[ALUy] — ALUx « [A]
¢ Test micro-instructions - ALUV:_[B]
_ f(PSR(z) == 1) — ALUr = [ALUX]&[ALUy]
- A—[ALUY
¢ Processor control
micro-instructions
— halt
Slides for Fundamentals of Computer Architecture 4

© Mark Burrell, 2004

Introducing The Instruction Set

. Comments
Directive * our first sum program

*

org 0

9005 MOVE #505,A * Transfer the first data value
* to the A register

9103 MOVE #$03,B * Transfer the second data value
* the B register

0600 ADD B, A * BAdd them, storing the result i
* the A register

FO00 HALT % Stop the program

Machine code Mnemonics and Comments
operands

If we were to write programs using micro-instructions

— they would be extraordinarily long and very difficult to check that we haven'’t
introduced any mistakes.

— Therefore, we don't.
Instead, we group sets of micro-instructions together to form higher level
instructions, known as assembly language instructions.

- AND BA

Slides for Fundamentals of Computer Architecture 5
© Mark Burrell, 2004

Our First Program

r program in
Ou p Og a IHigher memory
b
memory — compare
H H 0008 0 0 0 ©0
with the previous
. 0007 0 0 0 O
SI I d e 0006 0 0 0 O
0005 0 0 0 0
0004 0 0 0 O
0003 F 0 0 0
0002 06 00 The program
0001 9 10 3 stored in memory
0000 9 0 0 5
Slides for Fundamentals of Computer Architecture 6

© Mark Burrell, 2004

The Fetch-Execute Cycle

Running the program
— The processor loads, or fetches, the first instruction from memory
(stored in memory at location $0000) into the IR;

— Next it runs, or executes, this first instruction - it is the CU that does
this, and as already seen, the A register takes the bit pattern $05;

— It then fetches the second instruction from memory and stores it in the
— Next it executes this second instruction - the B register takes the bit
pattern $03;

— efc.
The only ways that the processor would cease to fetch the next
instruction are:

— If the power to the processor is switched off;

— The halt microcode is executed;

— The processor reset button is pressed.

Slides for Fundamentals of Computer Architecture 7
© Mark Burrell, 2004

Inside The Fetch-Execute Cycle

IR

In our simple processor, the

fetch cycle is defined as the

. Contents of opcode
following RTL sequence: avvessed a3 IRopeodel] | Opcode. |Operand

- 1MAR « [PC]

Contents of operand
accessed as [IR(operand)]

- 2INC « [PC] Fm\
- 3PC « [INC] aocessedas [
— 4 MDR « [M[MAR]] The execute cycle for the given
- 5IR « [MDR] opcode:
— 6 CU « [IR(opcode)] - 1ALUx « [A]
— 2ALUy « [B]
— 3 ALUr = [ALUX] + [ALUy]
— 4 A« [ALUr]
Slides for Fundamentals of Computer Architecture 8

© Mark Burrell, 2004

Sign Extension

* When we perform a 8 bit Value

data movement from .-
the IR(operand) the ‘0 00000000010101 1‘ 16-bit Value
data value is sign Gopios ofthe MSB

extended to 16 bits
8-bit Value

- /

- '

‘1 11111111.010101 1‘ 16-bit Value

e
Copies of the MSB

Slides for Fundamentals of Computer Architecture 9
© Mark Burrell, 2004

Running The Program In
JASPer

& JASPer P

Fle_Plocessor_Menoy Scieen Help

s(Ela[e] sl=[ox8] SEle] b E=ETE]
0000:9005 MOVE #data, A +
0001:9103 MOVE #data, B :! 0004 5¢ ~
0002:0600 ADD B, A =
0003 :FO00 HALT 0004 5z =
0004:0000 ADD #data, d w
0005:0000 DD #data, &
0006:0000 DD #data, & 0000)g5 o008
0007:0000 DD Hdata, b
0005:0000 DD Hdata, b Booa]
0005:0000 DD Hdata, L AFOOO R . 2005
000A:0000 ADD #data, &
DO0E:0000 ADD #data, b =
. cu =4
000C:0000 ADD Hdata, b ’E 0203 ALU 0\?5
000D:0000 ADD #data, A
DO0E:0000 ADD #data, A |t A
000F:0000 ADD #data, A =l 1
|
Slides for Fundamentals of Computer Architecture 10

© Mark Burrell, 2004

Chapter Summary

— Tasks for individual registers

» The PC is used to bookmark which instruction the processor is
to execute next;

The INC is used to add 1 to the PC;

The MAR and MDR are used to access memory;
A and B are general purpose registers;

The IR is used to store the instruction;

The ALUx and ALUy are the ALU inputs;

The ALUTr is the ALU output, and the PSR contains flags that
are updated by the ALU.

Slides for Fundamentals of Computer Architecture 11
© Mark Burrell, 2004

Chapter Summary

Micro-instructions
— The four sets of micro-instructions understood by our simple
processor are
+ the data movement micro-instructions,
« the ALU micro-instructions,
« the test micro-instructions
+ and the control micro-instructions;
— All micro-instructions can be represented by an RTL
description;
— Assembly language instructions can be defined using micro-
instructions.

Slides for Fundamentals of Computer Architecture 12
© Mark Burrell, 2004

Chapter Summary

Instruction sets

— The number of instructions within an instruction set is limited by
the width of the opcode;

— Our simple processor has an opcode width of eight bits and
therefore we can have a maximum of 256 instructions in an
instruction set. In reality we do not need this many to write
useful programs.

Slides for Fundamentals of Computer Architecture 13
© Mark Burrell, 2004

Chapter Summary

* The format of a program
— The processor executes the machine codes of a program;

— Additionally we add mnemonics, operands and comments so
that we can understand what the individual machine codes are
to do.

* The fetch-execute cycle

— The processor runs programs by using the fetch-execute cycle;

— Each instruction in memory is in turn, fetched, placed in the IR,
and then executed by the CU.

Slides for Fundamentals of Computer Architecture 14
© Mark Burrell, 2004

