Fundamentals of Computer
Architecture

8. Bringing It All Together — The
Hardware Engineer’'s Perspective

Slides for Fundamentals of Computer Architecture
© Mark Burrell, 2004

CHAPTER OVERVIEW

* This chapter includes:

— Assigning tasks to individual processor
components;

— Micro-instructions;

— |Instruction sets;

— The format of a program;

— The fetch-execute cycle;

— Executing programs in JASPer.

Slides for Fundamentals of Computer Architecture
© Mark Burrell, 2004

So what sort of tasks does the
processor have to do?

It needs to be able to read bit
patterns from, and write bit
patterns to, memory. We saw
how it could do this in the
previous chapter;

It needs to keep track of where
we are within a program, so it
knows what to do next;

It needs to know what to do for
a particular instruction;

It needs to be able to perform
arithmetic and logical
operations;

It needs some general purpose
storage areas.

Slides for Fundamentals of Computer Architecture
© Mark Burrell, 2004

Processor

—(PC_ |

IR

Control
Unit

Introducing Micro-Instructions

« Data movement micro- How can we go about
Instructions obtaining the logical AND
— MAR < [A]; of the bit patterns stored

» ALU micro-instructions in the A and B registers?
— ALUr = [ALUX]+[ALUy] — ALUx — [A]

» Test micro-instructions - ALy < [B]
_ f(PSR(z) == 1) — ALUr = [ALUX]&[ALUy]

— A —[ALUY]
 Processor control

micro-instructions
— halt

Slides for Fundamentals of Computer Architecture 4
© Mark Burrell, 2004

Introducing The Instruction Set

N e Comments
Directive * Our first sum program
*
HH%H‘ org 0O

9005 MOVE #505,R * Transfer the first data walue
* to the A register

9103 MOVE #503,B * Transfer the second data walue
* the B register

0600 ADD B,Ah * Add them, storing the result i1
* the & register

FOOO HALT * Stop the program

Machine code Mnemonics and Comments
operands

« If we were to write programs using micro-instructions

— they would be extraordinarily long and very difficult to check that we haven’t
introduced any mistakes.

— Therefore, we don't.

* Instead, we group sets of micro-instructions together to form higher level
instructions, known as assembly language instructions.
— AND B,A

Slides for Fundamentals of Computer Architecture 5
© Mark Burrell, 2004

Our First Program

* Our program in |
II-Ilgl';a‘awr memory
memaory — compare peatons
. . 0008 0O 0 0 O
with the previous
. 0007 0O 0 0 O
Sllde 0006 O 0 0 O
0005 O 0 0 O
0004 O 0 0 O
0003 F 0 0 O N
0002 O 6 0 O S The program
0001 g 1 0 3 stored in memory
0000 9 0 0 5 J/
Slides for Fundamentals of Computer Architecture 6

© Mark Burrell, 2004

The Fetch-Execute Cycle

* Running the program

— The processor loads, or fetches, the first instruction from memory
(stored in memory at location $0000) into the IR;

— Next it runs, or executes, this first instruction - it is the CU that does
this, and as already seen, the A register takes the bit pattern $05;

— It then fetches the second instruction from memory and stores it in the
IR;

— Next it executes this second instruction - the B register takes the bit
pattern $03;

— etc.

« The only ways that the processor would cease to fetch the next
Instruction are:

— If the power to the processor is switched off;
— The halt microcode is executed;
— The processor reset button is pressed.

Slides for Fundamentals of Computer Architecture 7
© Mark Burrell, 2004

In our simple processor, the s 0 0 s
fetch cycle is defined as the |
foIIowing RTL sequence: ffggfdioﬁéffﬁmdeﬂ qucodeF ;:)perar"ldF gfgggfdo;o[ﬁgﬁggrand}]
— 1 MAR « [PC]
— 2INC « [PC] Coterts of R
— 3PC « [INC] accessed as [IR]
— 4 MDR « [M[MAR]] The execute cycle for the given
— 5IR « [MDR] opcode:
— 6 CU — [IR(opcode)] — 1 ALUX « [A]
— 2 ALUy < [B]
— 3 ALUr = [ALUX] + [ALUy]
— 4 A« [ALUTr]
Slides for Fundamentals of Computer Architecture 8

© Mark Burrell, 2004

Sign Extension

* When we perform a 0/0101011| g pitValue
data movement from .- /
the IR(operand) the 000000000010101 1| 16-bit Value
data value is sign Copies of the MSB

extended to 16 bits

1010107117 g-hit Value

-

-
-

-
-

1111111110101 01 1| 16-bit Value

Copies of the MSB

Slides for Fundamentals of Computer Architecture 9
© Mark Burrell, 2004

Running The Program In
JASPer

= JASPer M= B3
File Processor Memory Screen Help
] =67 =l=(F~8] 2=e={e| BpmEE o 2=
0000: 9005 MOVE #data, b i’ MAR
0001:9103 MOVE #idata, B _OOO4W 0093 5
0002 : 0600 ADD B, L o
0003 : FOOO HALT —0004 | MDR—— =
0004:0000 ADD #data, A FOOO W
0005:0000 ADD #data, L 5000k q
0006:0000 ADD #data, b |* SP 0008
0007:0000 ADD #data, L
0005:0000 ADD #data, L B
0009:0000 ADD #data, A ==FO00ks [| 0003
000A: 0000 ADD #data, A |
R g
O00E:0000 ADD #data, A cu o 2, 0003 0005
00OC:0000 ADD #data, A ALU
000D :0000 ADD #data, A TALT X Y
0OO0E:0000 ADD #data, A 0008 R
O0OF: 0000 ADD #data, L =] —
OF PSR | e [
Slides for Fundamentals of Computer Architecture 10

© Mark Burrell, 2004

Chapter Summary

— Tasks for individual registers

 The PC is used to bookmark which instruction the processor is
to execute next;

 The INC is used to add 1 to the PC;

« The MAR and MDR are used to access memory;,
* A and B are general purpose reqgisters;

 The IR is used to store the instruction;

 The ALUx and ALUy are the ALU inputs;

 The ALUr is the ALU output, and the PSR contains flags that
are updated by the ALU.

Slides for Fundamentals of Computer Architecture 11
© Mark Burrell, 2004

Chapter Summary

e Micro-instructions

— The four sets of micro-instructions understood by our simple
processor are
* the data movement micro-instructions,
* the ALU micro-instructions,
» the test micro-instructions
« and the control micro-instructions;

— All micro-instructions can be represented by an RTL

description;
— Assembly language instructions can be defined using micro-
Instructions.
Slides for Fundamentals of Computer Architecture 12

© Mark Burrell, 2004

Chapter Summary

 |nstruction sets

— The number of instructions within an instruction set is limited by
the width of the opcode;

— Qur simple processor has an opcode width of eight bits and
therefore we can have a maximum of 256 instructions in an

iInstruction set. In reality we do not need this many to write
useful programs.

Slides for Fundamentals of Computer Architecture 13
© Mark Burrell, 2004

Chapter Summary

« The format of a program
— The processor executes the machine codes of a program;

— Additionally we add mnemonics, operands and comments so
that we can understand what the individual machine codes are
to do.

« The fetch-execute cycle
— The processor runs programs by using the fetch-execute cycle;

— Each instruction in memory is in turn, fetched, placed in the IR,
and then executed by the CU.

Slides for Fundamentals of Computer Architecture 14
© Mark Burrell, 2004

