
1Slides for Fundamentals of Computer Architecture
© Mark Burrell, 2004

Fundamentals of Computer
Architecture

8. Bringing It All Together – The
Hardware Engineer’s Perspective

2Slides for Fundamentals of Computer Architecture
© Mark Burrell, 2004

CHAPTER OVERVIEW

• This chapter includes:
– Assigning tasks to individual processor

components;
– Micro-instructions;
– Instruction sets;
– The format of a program;
– The fetch-execute cycle;
– Executing programs in JASPer.

3Slides for Fundamentals of Computer Architecture
© Mark Burrell, 2004

Recap

• So what sort of tasks does the
processor have to do?
– It needs to be able to read bit

patterns from, and write bit
patterns to, memory. We saw
how it could do this in the
previous chapter;

– It needs to keep track of where
we are within a program, so it
knows what to do next;

– It needs to know what to do for
a particular instruction;

– It needs to be able to perform
arithmetic and logical
operations;

– It needs some general purpose
storage areas.

4Slides for Fundamentals of Computer Architecture
© Mark Burrell, 2004

Introducing Micro-Instructions

• Data movement micro-
instructions
– MAR ← [A];

• ALU micro-instructions
– ALUr = [ALUx]+[ALUy]

• Test micro-instructions
– if(PSR(z) == 1)

• Processor control
micro-instructions
– halt

• How can we go about
obtaining the logical AND
of the bit patterns stored
in the A and B registers?
– ALUx ← [A]
– ALUy ← [B]
– ALUr = [ALUx]&[ALUy]
– A ← [ALUr]

5Slides for Fundamentals of Computer Architecture
© Mark Burrell, 2004

Introducing The Instruction Set

• If we were to write programs using micro-instructions
– they would be extraordinarily long and very difficult to check that we haven’t

introduced any mistakes.
– Therefore, we don’t.

• Instead, we group sets of micro-instructions together to form higher level
instructions, known as assembly language instructions.

– AND B,A

6Slides for Fundamentals of Computer Architecture
© Mark Burrell, 2004

Our First Program

• Our program in
memory – compare
with the previous
slide

7Slides for Fundamentals of Computer Architecture
© Mark Burrell, 2004

The Fetch-Execute Cycle

• Running the program
– The processor loads, or fetches, the first instruction from memory

(stored in memory at location $0000) into the IR;
– Next it runs, or executes, this first instruction - it is the CU that does

this, and as already seen, the A register takes the bit pattern $05;
– It then fetches the second instruction from memory and stores it in the

IR;
– Next it executes this second instruction - the B register takes the bit

pattern $03;
– etc.

• The only ways that the processor would cease to fetch the next
instruction are:
– If the power to the processor is switched off;
– The halt microcode is executed;
– The processor reset button is pressed.

8Slides for Fundamentals of Computer Architecture
© Mark Burrell, 2004

Inside The Fetch-Execute Cycle

• In our simple processor, the
fetch cycle is defined as the
following RTL sequence:
– 1 MAR ← [PC]
– 2 INC ← [PC]
– 3 PC ← [INC]
– 4 MDR ← [M[MAR]]
– 5 IR ← [MDR]
– 6 CU ← [IR(opcode)]

The execute cycle for the given
opcode:
– 1 ALUx ← [A]
– 2 ALUy ← [B]
– 3 ALUr = [ALUx] + [ALUy]
– 4 A ← [ALUr]

9Slides for Fundamentals of Computer Architecture
© Mark Burrell, 2004

Sign Extension

• When we perform a
data movement from
the IR(operand) the
data value is sign
extended to 16 bits

10Slides for Fundamentals of Computer Architecture
© Mark Burrell, 2004

Running The Program In
JASPer

11Slides for Fundamentals of Computer Architecture
© Mark Burrell, 2004

Chapter Summary

– Tasks for individual registers
• The PC is used to bookmark which instruction the processor is

to execute next;
• The INC is used to add 1 to the PC;
• The MAR and MDR are used to access memory;
• A and B are general purpose registers;
• The IR is used to store the instruction;
• The ALUx and ALUy are the ALU inputs;
• The ALUr is the ALU output, and the PSR contains flags that

are updated by the ALU.

12Slides for Fundamentals of Computer Architecture
© Mark Burrell, 2004

Chapter Summary

• Micro-instructions
– The four sets of micro-instructions understood by our simple

processor are
• the data movement micro-instructions,
• the ALU micro-instructions,
• the test micro-instructions
• and the control micro-instructions;

– All micro-instructions can be represented by an RTL
description;

– Assembly language instructions can be defined using micro-
instructions.

13Slides for Fundamentals of Computer Architecture
© Mark Burrell, 2004

Chapter Summary

• Instruction sets
– The number of instructions within an instruction set is limited by

the width of the opcode;
– Our simple processor has an opcode width of eight bits and

therefore we can have a maximum of 256 instructions in an
instruction set. In reality we do not need this many to write
useful programs.

14Slides for Fundamentals of Computer Architecture
© Mark Burrell, 2004

Chapter Summary

• The format of a program
– The processor executes the machine codes of a program;
– Additionally we add mnemonics, operands and comments so

that we can understand what the individual machine codes are
to do.

• The fetch-execute cycle
– The processor runs programs by using the fetch-execute cycle;
– Each instruction in memory is in turn, fetched, placed in the IR,

and then executed by the CU.

